Suponga que Ud. decide dar un paseo y partiendo de la puerta de su casa, recorre 100 m hacia el norte, 100 m hacia el este y finalmente 200 m hacia el norte. ¿Cuál fue el desplazamiento total que Ud. efectuó?. ¿Cuál la dirección y sentido del desplazamiento total?.
SOLUCIÓN
Interpretación del problema
El enunciado del problema indica los recorridos, del siguiente modo: 100 m hacia el norte, 100 m hacia el este y 200 m hacia el norte. Esta parte del enunciado, hace referencia a desplazamiento, por ejemplo el primer tramo del recorrido, la expresión 100 m, indica el módulo del vector desplazamiento, la dirección y sentido son indicados con los términos hacia el norte; entonces podemos denotar estos vectores desplazamiento como: d1 de módulo d1 100 m, dirección y sentido hacia el norte, d2, de módulo d2 = 100 m, dirección y sentido hacia el este, y d3, de módulo d3 = 200 m, dirección y sentido hacia el norte. Con esta notación, representamos estos vectores en la figura 2.15; en esta construcción vectorial, es evidente que el desplazamiento total, denotado por d, es igual a:
d = d1 + d2 + d3
Entonces el problema consiste en calcular la suma de vectores desplazamiento, di, d2, d3. Aplicando la propiedad conmutativa de la suma de vectores, la expresión (2.9) puede escribirse como:
d = d2 + (d1 + d3)
Esta última ecuación simplifica la suma de vectores, como se observa en la figura 2.16(a). Luego la suma d1 + d3, tiene de módulo di + d3 = 300 m, es decir la suma algebraica de sus módulos; esto solo es válido si d1 y d3 tienen la misma dirección y sentido. La figura 2.16(b), muestra el triángulo equivalente a la suma de vectores de la figura 2.16(a). Entonces, ya que el triángulo es rectángulo, el lado d se calcula empleando el teorema de Pitágoras